Дистанционная лабораторная работа 5 по иллюстрации уравнения Бернулли

Дистанционная лабораторная работа 5 по иллюстрации уравнения Бернулли

Цель работы. Опытное подтверждение уравнения Д. Бернулли, т. е. понижения механической энергии по течению и перехода потенциальной энергии в кинетическую и обратно (связи давления со скоростью).


Задание. На основе замеров при просмотре фильма и анализе фотографии течения жидкости в канале переменного сечения в устройстве № 4 построить линии энергий для потока и проверить их соответствие уравнению Бернулли.

Описание устройства № 4. Устройство № 4 содержит баки 1 и 2, сообщаемые через опытные каналы постоянного 3 и переменного 4 сечений (рис. 1). Каналы соединены между собой равномерно расположенными пьезометрами I–V, служащими для измерения пьезометрических напоров в характерных сечениях. Устройство заполнено подкрашенной водой.

В одном из баков предусмотрена шкала 5 для измерения уровня воды. При перевертывании устройства, благодаря постоянству напора истечения Но во времени, обеспечивается установившееся движение воды в нижнем канале. Другой канал в это время пропускает воздух, вытесняемый жидкостью из нижнего бака в верхний.


Порядок выполнения работы.

 1. Зарисовать схему устройства № 4 и составить таблицу следующего вида. 


2. Посмотреть фильм с демонстрацией течения воды через канал переменного сечения в устройстве № 4 и секундомером замерить время t полного опорожнения верхнего бака. 

3. Под таблицей записать значение времени t опорожнения бака, объем бака принять равным W=700 см3 и определить расход Q=W/t.

4. В строке (стр.) 2 рассчитать среднюю скорость течения жидкости в каждом сечении каналаV=Q / ω Скорость в нулевом сечении (перед входом в канал) принять равной нулю.

5. На фотографии канала с пьезометрами (рис. 2) снять показания пьезометров hП1.... ... ... hП5 и записать их в стр. 3. В сечении VI пьезометрический напор равен 0.

6. В стр. 4 определить скоростной напор hк в сечениях канала. Принять g = 981 см/с2.

7. В стр. 5 определить полный напор H (полную удельную энергию) в каждом сечении. Так как опытный канал горизонтальный и плоскость сравнения 0–0 проведена через его ось, то геометрический напор z1= z2= 0.

8. Вычертить в масштабе канал с осями пьезометров (рис. 3). Отложить  от оси канала пьезометрические напоры hП на осях пьезометров, наметить уровни жидкости и соединить их между собой и центром выходного сечения VI, как показано на рис. 3. Получится пьезометрическая линия, показывающая изменение потенциальной энергии (давления) вдоль потока. Для получения напорной линии (линии полной механической энергии) нужно отложить от оси канала полные напоры Н и соединить полученные точки, как показано на рис. 3.

Напорная и пьезометрическая линии дают наглядное представление о переходе одного вида энергии в другой по длине потока и позволяют установить значения основных параметров течения жидкости. 


9. Проанализировать изменения полной механической H, потенциальной  и кинетической V2/(2g) энергий жидкости вдоль потока и проверить их соответствие нижеприведенным правилам построения линий энергий, вытекающим из уравнения Бернулли.

А. Напорная линия (полный напор  постоянно понижается по течению (если на рассматриваемом участке нет насоса) ввиду необратимого преобразования механической энергии в тепловую при преодолении потоком сил гидравлического трения. Причем уклон линии (потери напора hтр) тем больше, чем меньше сечение участка потока (см. рис. 3).

Б. Пьезометрическая линия отражает изменение потенциальной энергии (z +), и, в отличие от напорной, может не только понижаться, но и повышаться по течению. Это происходит при расширении потока (см. рис. 2, 3) за счет повышения давления p ввиду уменьшения скорости V. Пьезометрическая линия проходит через центр тяжести выходного сечения канала (трубопровода) при истечении жидкости в атмосферу и ниже оси канала, если давление в нем меньше атмосферного.

В. Расстояние между пьезометрической и напорной линиями численно равно кинетической энергии  и поэтому обратно пропорционально диаметру трубы. Для участков потоков постоянного сечения средние скорости одинаковы по пути, поэтому такие линии, как правило, параллельны между собой (рис. 3). Эти линии для потоков в конфузорах (конических сходящихся патрубках) расходятся, а в диффузорах (конических расходящихся патрубках) – сходятся. В баках и водоёмах, где жидкость не движется (V=0), напорная и пьезометрическая линии энергий совпадают со свободной поверхностью, если она находится под атмосферным давлением.

10. Записать выводы, где указать какие знания и навыки получены при выполнении данной работы и в каких сферах инженерной деятельности они могут быть применены.


Читайте также

Дистанционная лабораторная работа 1. Изучение предмета и истории развития гидравлики (механики жидкости)

Дистанционная лабораторная работа 1. Изучение предмета и истории развития гидравлики (механики жидкости)

Цель работы. Изучить предмет и историю развития гидравлики, выявить ее место среди других дисциплин ...

Дистанционная лабораторная работа 2. Изучение физических свойств жидкости

Дистанционная лабораторная работа 2. Изучение физических свойств жидкости

Цель работы. Освоение техники измерения температурного расширения, плотности, вязкости и поверхностн...

Дистанционная лабораторная работа 3. Измерение гидростатического давления жидкостными приборами

Дистанционная лабораторная работа 3. Измерение гидростатического давления жидкостными приборами

Цель работы. Приобретение навыков по измерению гидростатического давления жидкостными приборами.Зада...

Дистанционная лабораторная работа 4. Определение режима течения жидкости

Дистанционная лабораторная работа 4. Определение режима течения жидкости

Цель работы. Приобретение навыков по определению режимов течения жидкости визуальным и расчетным спо...